
COP 3223: C Programming (Structures – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Structures In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Structures – Part 1) Page 2 © Dr. Mark J. Llewellyn

Structures In C

• Structures – sometimes referred to as aggregates – are

collections of related variables under one name.

• So far, we’ve only looked at one structure in C, the array.

Arrays have two important properties that distinguish them

from most structures. First, all array elements are of the same

type. Second, the elements of the array are stored in contiguous

locations in memory which allows us to specify a position in

the structure using an index value (recall pointer arithmetic).

• The properties of a structure are quite different from that of an

array. The elements (called members in C) are not required to

have the same type, and the members of a structure each have a

name, so to select a member of a structure its name is used not

its position.

COP 3223: C Programming (Structures – Part 1) Page 3 © Dr. Mark J. Llewellyn

Structures In C

• Many programming languages have facilities for user defined

structures. It is common in many languages, other than C, to

refer to these structures as records, and the members of the

records are called fields or attributes.

• It is common to used structures to define records that are stored

in files.

• Pointers and structures are used to facilitate the formation of

more complex data structures such as linked lists, queues,

stacks, and trees. All of which are extensively used data

structures in many computer science applications.

• Structures are considered to be derived data types, meaning that

they are constructed using objects of other types.

COP 3223: C Programming (Structures – Part 1) Page 4 © Dr. Mark J. Llewellyn

Structures In C

• In C you declare a struct (essentially a type) and then you

can create variables of the struct type.

• The general syntax of a struct declaration is:

struct <struct_name> {

<type1> <variable1>;

<type2> <variable2>;

. . .

<typeN> <variableN>;

}; Variables of the structure type can be declared by

placing a comma-separated list between the closing

brace of the structure definition and the semicolon that

ends the structure definition.

Note: C convention is to

place structure

definitions at the top of

your source file right

after any #define

directives.

COP 3223: C Programming (Structures – Part 1) Page 5 © Dr. Mark J. Llewellyn

Structures In C

• As an example structure declaration, let’s create a structure that

would contain information about students at UCF. We want to

include the student’s name, their GPA, and the number of credit

hours they have completed. We might declare the structure as

follows:

struct ucfStudent {

char name[MAXLENGTH];

double gpa;

int creditHoursCompleted;

}student1, student2;

• This structure definition creates two variables named

student1 and student2 with the structure as shown.

COP 3223: C Programming (Structures – Part 1) Page 6 © Dr. Mark J. Llewellyn

Structures In C

• The two variables student1 and student2 each have

three members (fields) named name, gpa, and

creditHoursCompleted.

• The members of a structure are stored in memory in the

order in which they are declared. Assuming that

student1 is located at address 2000 in the memory and

student2 is located at address 4000 in memory, these

structures in memory would be represented as shown in

the diagram on the following page:

Let’s assume that MAXLENGTH is 5, doubles

require 8 bytes of memory and int requires 4 bytes

of memory

COP 3223: C Programming (Structures – Part 1) Page 7 © Dr. Mark J. Llewellyn

. . .

2000

2001

2002

2003

2004

2005

name

2012

gpa

2013

2014

2015

2016

2017

address memory

creditHoursCompleted

student1

. . .

4000

4001

4002

4003

4004

4005

name

4012

gpa

4013

4014

4015

4016

4017

address memory

creditHoursCompleted

student2

COP 3223: C Programming (Structures – Part 1) Page 8 © Dr. Mark J. Llewellyn

Structures In C

• As with arrays, a structure variable can be initialized at the

time it is declared. The initializer values must appear in

the same order in which their corresponding members

were declared in the structure and are enclosed in braces as

they were with array initializers.

struct ucfStudent {

char name[MAXLENGTH];

double gpa;

int creditHoursCompleted;

}student1 = {“Debi”, 3.99, 110},

student2 = {“Suzie”, 3.25, 58};

COP 3223: C Programming (Structures – Part 1) Page 9 © Dr. Mark J. Llewellyn

Structures In C

• Structures may not be compared using the == or !=

operators, because structure members may not necessarily

be stored in contiguous bytes of memory. Sometimes

there are “holes” in a structure, because computers may

store specific data types only on certain memory

boundaries such as half word, word, or double word

boundaries.

• For example, consider a computer with a 4-byte word and

the structure definition:

struct example {

char c;

int n;

} sample1;

If sample1 were stored beginning at address

1000 (a word boundary) and its first member

requires only 1 byte, the next word boundary

would be at address 1004, leaving a hole of 3

bytes.

COP 3223: C Programming (Structures – Part 1) Page 10 © Dr. Mark J. Llewellyn

Accessing Members Of Structures

• The dot operator has the same precedence as the postfix ++ and

– operators, which means it takes precedence over nearly all C

operators (only () and [] are higher). C provides two operators

for accessing the members of a structure.

• The structure member operator (.), more commonly called

the dot operator. And the structure pointer operator (->). The

structure pointer operator is used to access a structure member

via a pointer to the structure. We’ll use this operator later and

for now focus only on the dot operator.

• To access a member of a structure use the following syntax:

nameOfTheStructure.nameOfTheMember

• Example: student1.gpa

COP 3223: C Programming (Structures – Part 1) Page 11 © Dr. Mark J. Llewellyn

Accessing Members Of Structures

• To illustrate some of the features of structures that we’ve seen

so far, let’s write a program that utilizes the ucfStudent

structure we created on page 8.

• Notice the different way the structure members are assigned

values using initializers, values read from the keyboard and

direct assignment.

COP 3223: C Programming (Structures – Part 1) Page 12 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 13 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 14 © Dr. Mark J. Llewellyn

Accessing Members Of Structures

• Now let’s look at the other operator used to access a structure,

the structure pointer operator (->).

• This operator works when a pointer to a structure has been

declared and we are working with the structure members

through the pointer to the structure.

• As a running example, let’s declare a structure that represents a

normal playing card:

struct card {

char *face[MAX];

char *suit[MAX];

};

COP 3223: C Programming (Structures – Part 1) Page 15 © Dr. Mark J. Llewellyn

Accessing Members Of Structures

• Declaring a pointer to a card structure would be done as

follows:

struct card *cardPtr;

• We can then access the members of the structure card using

the structure pointer operator as follows:

cardPtr->face = “Ace”;

cardPtr->suit = “Spades”;

• Reading a value into a structure using a pointer is done in a

similar manner , such as:

scanf(“%s”, &cardPtr->face);

• The following program illustrates the use of both the dot

operator and the pointer structure operator.

COP 3223: C Programming (Structures – Part 1) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 18 © Dr. Mark J. Llewellyn

The keyword typedef

• The keyword typedef provides a mechanism for creating

aliases for previously defined data types. Names for structure

types are often defined with typedef to create shorter type

names.

• For example, the statement:

typedef struct card Card;

defines a new type name Card as an alias for the type struct

card.

• C convention is to use a capital letter for the type defined in a

typedef statement.

COP 3223: C Programming (Structures – Part 1) Page 19 © Dr. Mark J. Llewellyn

The keyword typedef

• It is most common to use a typedef statement to define a type

with a structure where the structure name (structure tag) is

missing.

• For example, the card structure that we’ve been using would be

defined as follows:

typedef struct {

char *face[MAX];

char *suit[MAX];

} Card;

• Notice that when using the typedef statement, that variables of

the structure type cannot be declared between the closing } and

the closing ;.

COP 3223: C Programming (Structures – Part 1) Page 20 © Dr. Mark J. Llewellyn

Using Structures With Functions

• Structures can be passed to functions by passing individual

structure members, by passing an entire structure, or by passing

a pointer to a structure.

• When structures or individual members of structures are passed

to a function, they are passed by value. Therefore, it is

impossible for the called function to modify members of the

caller’s structure.

• To pass a structure by reference you must pass the address of

the structure variable to the function (i.e., a pointer to the

structure). [In the following example, all the parameters passed

to functions are arrays so implicit pointers are being passed in

lines 77-79.]

• Arrays of structures (like any array) are passed by reference.

COP 3223: C Programming (Structures – Part 1) Page 21 © Dr. Mark J. Llewellyn

Using Structures With Functions

• The final example in this set of notes continues with the card

structure, but introduces the typedef statement and uses

several functions to which arrays of structures are passed.

• The program creates a deck of cards (an array of structures) and

then uses functions to fill the deck with valid cards, shuffle the

deck, and finally deal all the cards in the deck.

COP 3223: C Programming (Structures – Part 1) Page 22 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 24 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 25 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 1) Page 26 © Dr. Mark J. Llewellyn

Practice Problems

1. Write a C program that defines a structure for

food that maintains the name of the food, a

portion size of that food, and the number of

calories in the portion size. Read the values

into an array of food items from a file of data,

then print the contents of the array of food

similar to how we did it in the first example on

page 12.

